منابع مشابه
Fuzzy Data Envelopment Analysis for Classification of Streaming Data
The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...
متن کاملFuzzy Data Envelopment Analysis for Classification of Streaming Data
The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...
متن کاملResource Adaptive Periodicity Estimation of Streaming Data
Streaming environments typically dictate incomplete or approximate algorithm execution, in order to cope with sudden surges in the data rate. Such limitations are even more accentuated in mobile environments (such as sensor networks) where computational and memory resources are typically limited. This paper introduces the first “resource adaptive” algorithm for periodicity estimation on a conti...
متن کاملAdaptive Methods for Activity Monitoring of Streaming Data
Activity monitoring deals with monitoring data (usually streaming data) for interesting events. It has several applications such as building an alarm or an alert system that triggers when outliers or change points are detected. We discuss desiderata for such a system. Then, assuming that the data can be modeled by linear models, we describe an adaptive incremental method for detecting outliers ...
متن کاملEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2014
ISSN: 1041-4347
DOI: 10.1109/tkde.2012.147